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We use the point transformation method to investigate on a cylindrical phase space a 
piecewise-linear second-order dynamic system whose representing point experiences 
jumps at the straight-line “seams” of the cyiindrical space. 

Equation o** + b 1i + 5F’ (9)1$ + F (9) = 621 (b > 0, h > 0, 0 6 B < if (i) 

where P (VP) is a %-periodic function such that 

P(9)={-: ;E; -;<<;=; (2) 

describes the dynamics of a phase automatic frequency control (aft) system with a pro- 
portional integrating filter [l and 23 and a rectangular characteristic of the phase detec- 

4 

Fig. 1 

b) 

tor [3]. It is necessary to take into account that this equa- 

tion becomes meaningless at the points of discontirmity 
of the characteristic F (9). 

The phase space of the system 

9. = I/r 6;= Q - h Ii + 6F’ @)I B - F (9) (3) 

corresponding to (1) is a cylinder. ~~~uc~g the new 
variables tQ and $’ which from now on we denote by t 

and g P = ?&t, 9” = y I h (4 

we can reduce the system to the form 

cp’= Y, y’= [sa - F (cpl / h2 - 11 + bF ’ (cp)l y (5) 

Introducing the notation 

0, = (1 + sa) / h%, c=(i-~)/h%\<a (6) 

we can write system (5) as 
cp’= JI, y’= UX- y (-n<fp<O) (7) 
‘p’= y, y*= - CTG- y (O<p<n) (8) 

Systems (7) and (8) enable us to follow the motion of the representing point up to the 
instant when it reaches one of the straight lines 4p = 0 or ‘p = ti on which system (5) is 

not defined. 
The subsequent motion of the representing point requires further definition. We must 

specify how long it remains on the straight line, the manner of its motion along this line, 

the point at which it leaves the line and which of systems (7) and (8) describes its further 
motion. We shall utilize the additional definition constructed in [4]. (When using the 
formulas ( l ) of [4], we must take into account the change of scale of t and y defined 

by (4) 1. 

l ) The expression P = 2b, h > 0 appearing in the fourth line from top on p. 756 of [4] 
should read = 2bh > 0. 
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Figure la shows the pattern of the additionally defined motions along the straight line 

cp = a. The overlapping trajectories have been resolved on the q-axis for clarity. The 
representing point of system (5) arriving at the point (n, y) where y > 0 experiences 
an instantaneous jump of magnitude 2b upwards, along the line q = n and continues to 

move in 7~ > TC according to (7). If the representing point arrives at the point (n, 0) 
from the region y > 0, then its further behavfor is not uniquely defined. It remains at 
the point (n, 0) for some time and then either jumps to one of the points on the segment 

9 = n, b (1 + Q) < !I < 2b and continues to move in cp > h according to the system 
(7), or jumps to a point on the segment ‘p = x, - b (1 - a) < y < 0 and continues 
to move in 9, < XX according to (8). 

The representing point moving in the lower half-cylinder and arriving at the line 
9 = n behaves similarly (Fig. la). The point (n, 0) represents an eq~l~brium state of 
the saddle type and the trajectories passing through the points [n, b (1 + Q)] and 

ln, - b (1 - Q)l are its separatrices. The trajectories entering the point (3t, 0) play the 
role of the other two separatrices. 

Figure lb shows the pattern of additionally defined motions on the straight line ‘p = 0. 
The representing point, having arrived at the point (6, y) where y > 2b experiences an 

instantaneous jump of length Zb down the y-axis and then continues to move in.cp > 0 
according to system (8). If the representative point arrives at the point (0, y) where 

0 < y < 2b, then it jumps into the point (0, 0) and’ remains there idefinitely. 
The behavior of the representing point moving in the lower half-cylinder and arriving 

at the line cp = 0 is analogous to the previous case (Fig. lb). Point (0, 0) represents an 
equilibrium state analogous of the stable-node type. 

From now on we shall assume that (5) is the additionally defined system. 
Since systems (7) and (8) have no equilibrium states, additionally defined system (5) 

also has no equilibrium states apart from the points (0. 0) and’ (n, 0). 
It can be shown that system (5) has neither limit cycles encompassing the lower half- 

cylinder (y < 0) , nor limit cycles not encompassing the cylinder. 
We shall now establish the existence and find the number and stability of the limit 

cycles encompassing the upper half-cylinder. let us take on the straight line 4; = - n. 

the half-line 2: cp = - JX, y = z > 0 and consider a trajectory originating at some 
point z of -this half-line. If z is sufficiently large, then the half-~ajec~~ in question 
will go around the cylinder and re-enter 2 at a different point zr. This means that the 

set of similar trajectories effects a point transformation of the half-line Z into itself 
(we denote this uansformation by S),.and that its points z and Z, are in one-to-one cor- 
respondence. The transformation S results from the two transformations T and T, applied 
consecutively. Here by T we mean the travel of the representing point from the half- 

line Z to the half-line Y: 9 = 0, y = u > 0 , followed by a jump along the latter 
(the jumps referred to here do not terminate in the equilibrium state). T,.denotes the 
passage of the representing point from V’ to 2 , followed by an additionally defined mo- 
tion along the latter. Integration of (7) and (8) yields parameteric equations of the map- 
ping function relating the transformations T andT,.For T these equations are 

1- at 
$=.+p3 

2 - a% 26 ++---_-_ 
e’ - 1 31 0) 

and the parameter z is the time of travel of the representing point from 2 to V. This 
time must be varied from zero to a value at which .Z or D becomes zero. The derivatives 
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of (9) are of the form 
dz es (v + 2b) d% z+v-‘+2b 

-=- x= z >6 &,2 arce+ (e+ - 1) z9 < 0 (10) 

and the asymptotic representation of (9) is 
z=v+2b+n (11) 

Figure 2 depicts the trajectories which effect the transformation T,. If the points v 
lie on V above the trajectory of (8) which passes through (n, U), then the mapping func- 

tion for T, is z1 i+ce 
-=- 
ix c+ $-_i 

-+JJ,+c+~o (12) 

The parameter 9 appearing here denotes the time of travel of the representing point 
from V to 2. This time must be varied from zero to a value I&, such that z1 = 2b. The 
derivatives of (12) are of the form 

(13) 

and the asymptotic representation of (12) is 

0 
wr ‘p 

Fig. 2 . 

Fig. 3 

%=v+Bb--n (14) 
The transformation T1 puts the point v (0,) and the seg- 

ment b (1 + Q) < zl 6 2b on one-to-one correspondence, 
so that the mapping function for these v and z1 is repre- 
sented on the v z-plane by the segment 

v= u (RJ), 6 (1 + Q) < z1 .< 2b (15) 

To fiid the stationary points of the transformation S 

we must find the common points of the curves z = z (v) 

(9) and z1 = z1 (v) (12), (15). If b is sufficiently large, 
then the point of intersection of the curve z = z (v) with 
the z -axis lies above the point of intersection of the 
asymptotic curve z1 = z1 (v) with the z-axis, and the 

curves have no common points (see Fig. 3 where the curves 
z = z (v) and z, = z1 (v) are denoted by z and z1 , respec- 
tively). Let us decrease b, keeping the remaining para- 
meters constant For v = const we have 

d (z-zl) / db = 2 (dz / du - 1) > u W 

since, by (10) and (ll), dz / dv > 1). This implies that 
thie curves approach each other, and either that common 

points appear for sufficiently small b , or that b vanishes 
without any common points appearing. We can see which 

values of a and c correspond to one or the 

I/ /I other situation by considering the curves z 

D 

4 
v 

b) 
Fig. 4 

and z1 at 0 = 0 (Fig. 4). When the values 

of a and c correspond to Fig. 4a we have 
the first case ; Fig. 4b corresponds to the 
second case. The curve separating these 
two cases on the a&-plane is defined by the 
following conditions : 

z (T) = 0, z1 (0) = 0, v (T) = v (cl) (17) 
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or. in expanded form, 

c-1 = exp 0 - 8 - 1 G cp (@, u-1 = ‘p (- r) r/cp(--r)--e~~(e)=2 (181 

The function represented by the curve is an increasing one ; it lies in the region c <,a 
and passes through the point c = 0, a = a,,where exp (- 2 J a*) + 1 J a* - 1 = 0. 
The region corresponding to Fig. 4a lies between the curve (18) and the a -axis. If the 
point (a, c) lies outside this region, then the curves z and Z, have no common points and 

system (5) has no limit cycles for any b . 
Figure 5a shows the corresponding phase trajectories of the system (the scale of q has 

Fig. 5 
d) 

Fig. 6 

been made nonuniform to bring both equilibrium 
states to the front half of the cylinder ; had it been 

kept uniform, one of the states would be hidden 
behind the cylinder). Let us now suppose that the 
point (a, c) lies within the region bounded by the 
curve (18) and the a-axis. With sufficiently large 
6, we have the pattern of phase trajectories shown 

in Fig. 5a. 
With decreasing b there is an instant when the 

curves make a single point contact and a condition- 

ally stable limit cycle appears on the phase cylinder. 
As the value of b continues to decrease. the point 
of contact becomes two points of intersection and 

the conditionally stable limit cycle becomes two 
coarse limit cycles, the upper one stable and the 

lower one - unstable. Figure 5b shows the corre- 
sponding pattern of the phase trajectories. After 
this, the point of intersection corresponding to the 

stable limit cycle passes to the vertical part of the 
curve, Z, , and the stable limit cycle.becomes the 
closed contotu ABCDA(Fig.5c). This cycle separates 
the regions of attractionofthe stablelimit cycle and 

the state of stable equilibrium on the phase cylin- 
der in the same way as the unstable limit cycle. 

With further decreases in b, the distance between 

the point in question and the end point of z1 dimi- 

nishes,and the point finally vanishes. The contour 
ABCDA merges with the loop-shaped separatrix of 
the state of equilibrium (n, 0) . Continued decreases 
in the value of b to zero does not result in forma- 
tion of new bifurcations. The system has a single 
stable limit cycle and the corresponding pattern of 
phase trajectories is shown in Fig. 5d. 

The above description is based on the fact that 

the curves (9) and (12) can intersect at not more 
than two points (see Addendum). 

The surface in the parametettic space on which 
the conditionally stable limit cycle is formed is 
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defined by the conditions 
u(r)= VP), a (r) = z, @), dgfav=a2tfav (4!ll 

Let us rewrite these equations in expanded form, replacing the first equatiog by the 
difference between the first and the second one. Then setting 

kZf_ 2b / 3t (a 4 c) = 1 - bh’ (20) 

we obtain 
c0+1 a-t--l i+ acp (r) 

az - ce= 2, k(a+c)=,e_ -ti’ 
i + cg, C- 9) > o (21) 

1 -aqJ(-r) = i-ccp(0) 

Surface (21) (the lower surface on Fig. 6) intersects the plane k = I (b = 0) along the 
curve (18). and the plane c = 0 along the curve 

a& = (1 - KS)-’ (22) 

and has the asymptotic plane k = 1 / 2. Making use of the rotation of the vector field 
of system (8) with varying c, we can show that the intersection of this surface with the 
plane a = const represents a graph of an increasing function (Eqs. (21) can be used to 

construct the numerical dependence of the pull-in range @] on the parameters of the 

system). 
The conditions 

2 (r) = b (1 + S-J), v(r)= v(6), z1 (6) = 2b (23 
define the surface in the parameter space corresponding to the formation of the separat- 

rix loop. 
Let us substract the first equation of (23) from the sum of the remaining two and sub- 

stitute the resulting equation in place of the second equation of (23). This gives us 

a-1 = z - k (1 - e-*),a% - c0 = 2 i- c (1 - k), c-l = cp (0) (24)1 

We can construct the surface (24) easily, using the intersections with c = const. Its 
lines of intersection with the planes k = 1 and c = 0 are identical to those of surface 

(21) ; its asymptotic cylinder is 

2k = 2ee - 0 - f(2ee - 0)’ - 4ee , c-l = cp (0) (2.5) 

The intersections of the surface with the planes a = const and c = const are graphs 

of monotonic functions. 

Figure 6 shows a schematic breakdown of the parametric space of the system under 
investigation Into regions in which the phase trajectories have distinct qualitative struc- 
tures. The letters a, b, c, d indicate the regions corresponding to the respective patterns 

of Fig. 5. 
Note. When the dynamics of a device is described by system (3), then the stabili- 

zing processes begin on a certain circle surrounding the phase cylinder ( [5]. p. 183). It 
follows that the device will operate not only when its parameters are such that the sys- 

tem has no limit cycles, but also when the system has two limit cycles, provided the cir- 
cle of initial values lies below the unstable limit cycle. 

Addendum. We shall show that the curves (9) and (12) can have at most two points 
of intersection. Let us find the difference of the derivatives at these points 

dz dzl v+Zb z-an V 

do-dv=- v+2b-ax 
-- 

z z-2b ygy zEf(a, 2) 

where the quantities T and 6 have been eliminated by means of (9) and (12). Function 
f (v, z) changes sign at the straight lines z = 28, v = ax - 2b, z = u t 2b and at the 

hyperbola 
(a + c) 9;~ + 2bcz - 2bav - 2nbac = 0 



332 B. N. SkrfaMn 

Inspecting the phase pattern, we find that for the limit cycles we have v< an - 2b 
and a ) 26. Within the region defined by these inequalities the fiction f (Y, s) moving 
along the curve (9) changes its sign once only, namely at the point of intersection of (9) 
with the hyperbola (the line z = v i- 2b does not intersect (9) within this region). If 

the curves (9) and (12) intersected each other at more than two points, then the function 
f (Y, z) would change sign more than once on (9). 

The author thanks N. N, Bautin for useful remarks. 
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The problem of choosing a law of time variation of controlling forces of bounded abso- 
lute value which ensure a minimal deviation measure at the end of the trajectory and a 
minimal control measure is investigated for linear systems with a fixed time of motion. 
It shows that a unique optimal trajectory and a unique control exist for this optimal ter- 
minal control problem. The possibility of using the Pontriagin maximum principle to 
solve this problem is demonstrated and the practical difficiulties of such an approach 
are pointed out. These difficulties can be overcome by meaus of the proposed approxi- 
mate method for solving the two-point boundary value problem arising from the appli- 
cation of the maximum principle. A procedure for the practical realization of the above 
method on a computer is described. 

1. Formulrtion of the problem. Let the motion of some system be descri- 
bed by the following differential equations with variable coefficients : 

II m 

U” 

V=Zl P=il 

Here Z+ are the phase coordinates of the system in question ; a,,(t) and b,,,, (i) are the 
system parameters varying continuously with time ; f,, (t) are the prescribed external 

forces ; I+, (t) are the controlling forces of bounded absolute value whose law of variation 


